Approximate inference in continuous time Gaussian-Jump processes

نویسندگان

  • Manfred Opper
  • Andreas Ruttor
  • Guido Sanguinetti
چکیده

We present a novel approach to inference in conditionally Gaussian continuous time stochastic processes, where the latent process is a Markovian jump process. We first consider the case of jump-diffusion processes, where the drift of a linear stochastic differential equation can jump at arbitrary time points. We derive partial differential equations for exact inference and present a very efficient mean field approximation. By introducing a novel lower bound on the free energy, we then generalise our approach to Gaussian processes with arbitrary covariance, such as the non-Markovian RBF covariance. We present results on both simulated and real data, showing that the approach is very accurate in capturing latent dynamics and can be useful in a number of real data modelling tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate parameter inference in a stochastic reaction-diffusion model

We present an approximate inference approach to parameter estimation in a spatio-temporal stochastic process of the reaction-diffusion type. The continuous space limit of an inference method for Markov jump processes leads to an approximation which is related to a spatial Gaussian process. An efficient solution in feature space using a Fourier basis is applied to inference on simulational data.

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Approximate Inference in Latent Diffusion Processes from Continuous Time Observations

We propose a novel approximate inference approach for continuous time stochastic dynamical systems observed in both discrete and continuous time with noise. Our expectation-propagation approach generalises the classical Kalman-Bucy smoothing procedure to non-Gaussian observations, enabling continuous-time inference in a variety of models, including spiking neuronal models (state-space models wi...

متن کامل

Generalizing and Scaling up Dynamic Topic Models via Inducing Point Variational Inference

Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that topics change continuously over time and therefore impose continuous stochastic process priors on their model parameters. In this paper, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs)....

متن کامل

Universal Models of Multivariate Temporal Point Processes (With Supplementary Appendix Containing Proofs)

With the rapidly increasing availability of event stream data there is growing interest in multivariate temporal point process models to capture both qualitative and quantitative features of this type of data. Recent research on multivariate point processes have focused in inference and estimation problems for restricted classes of models such as continuous time Bayesian networks, Markov jump p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010